
pathtrees
Release 0.0.3

Bea Steers

Oct 19, 2022

CONTENTS

1 Installation 5
1.1 API . 5

Python Module Index 13

Index 15

i

ii

pathtrees, Release 0.0.3

Have you ever managed a project with a complex file structure where your paths encode a lot of information? Aren’t
you tired of sprinkling your code with tons of splits and joins and index counting? I am. It gets so confusing and hard
to reason about sometimes. Instead, I want to define my file structure in one place and just fill it with variables.

Here’s what we can do with a single path object.

import pathtrees

path = pathtrees.Path('data/{sensor_id}/raw/{date}/temperature_{file_id:04d}.csv')
path.update(sensor_id='asdf-123') # assign the sensor ID to the path

format the path using some data
path_13 = path.format(date='02022022', file_id=13)
assert path_13 == 'data/asdf-123/raw/02022022/temperature_0013.csv'
now use the formatted string, along with the path format, to parse the data from the␣
→˓path
assert path.parse(path_13) == {'sensor_id': 'asdf-123', 'date': '02022022', 'file_id':␣
→˓13}

And it’s pretty handy with glob too - you can glob over any variables that haven’t been specified.

list all files for asdf-123 on 02/02/2022
for f in path.specify(date='02022022').glob(): # specify() ~~ copy.update()

parse the file ID out of the path
print(path.parse(f)['file_id'])

list all dates
date_path = path.parent.specify(sensor_id='asdf-123')
for date_dir in date_path.glob():

parse the date out of each path
print("Date": date_path.parse(date_dir)['date'])

Now let’s see a whole directory tree.

Here is an example where we’re processing an audio dataset and want to save some outputs to disk.

By using pathtrees we can define the path structure at the top of a file and then the rest of your code can operate
independent of that structure. Want to add a prefix or suffix to your filename? Want to move a couple directories
around? Feeling evil and want to nest the SPL files under 15 extra directories? pathtrees D. G. A. F.. And neither
will your code! As long as the core pieces of information are still there (here: {sensor_id} and {file_id}) the rest
of your code doesn’t have to know about it!

First define the path structure.

import pathtrees
import librosa

paths = pathtrees.tree('{project}', {
'data': {

'{sensor_id}': {
'': 'sensor',
'audio': { '{file_id:04d}.flac': 'audio' },
'spl': { 'spl_{file_id:04d}.csv': 'spl' },
'embeddings': { 'emb_{file_id:04d}.csv': 'embeddings' },

},
},

(continues on next page)

CONTENTS 1

pathtrees, Release 0.0.3

(continued from previous page)

})
set some data to start with
paths.update(project='some-project')

Let’s try formatting some path objects.

partial format

treating the path as a string will partially format it
meaning that only the keys that are defned will be replaced.
assert paths.audio == 'some-project/data/{sensor_id}/audio/{file_id:04d}.flac'
assert (

paths.audio.partial_format(sensor_id='aaa') ==
'some-project/data/aaa/audio/{file_id:04d}.flac')

format

try:
paths.audio.format(sensor_id='aaa') # forgot file ID

except KeyError:
print("oops")

when you have all data specified, you can format it and get a complete path
and then you can take a formatted path and reverse it to get the data back out.
p = paths.audio.format(sensor_id='aaa', file_id=0)
assert p == 'some-project/data/aaa/audio/0000.flac'
assert (

paths.audio.parse(p) ==
{'project': 'some-project', 'sensor_id': 'aaa', 'file_id': 0})

But don’t worry, if the path is missing data and you try to use it as a path, it will throw an error.

try:
with open(paths.spl, 'r') as f: # some-project/data/{sensor_id}/audio/{file_id:04d}.

→˓flac
...

except KeyError:
print("I didn't provide all of the data, so this was bound to happen.")

spl_path = paths.spl.specify(sensor_id='bbb', file_id=15)
with open(spl_path, 'r') as f: # some-project/data/bbb/audio/0015.flac

print("Ah much better..")
print(f.read())

Now let’s use the paths to deal with some data.

loop over sensors - {sensor_id} automatically turned to '*'
for sensor_dir in path.sensor.glob(): # some-project/data/*

sensor_id = path.sensor.parse(sensor_dir)['sensor_id']

loop over a sensors flac files - {file_id} automatically turned to '*'
for audio_fname in path.audio.glob(): # some-project/data/{sensor_id}/audio/*.flac

y, sr = librosa.load(audio_fname)
(continues on next page)

2 CONTENTS

pathtrees, Release 0.0.3

(continued from previous page)

convert audio path to an spl path - some-project/data/{sensor_id}/spl/{file_id}
→˓.csv

spl_fname = path.translate(audio_fname, 'audio', 'spl')
convert audio path to an embedding path - some-project/data/{sensor_id}/

→˓embedding/{file_id}.csv
embedding_fname = path.translate(audio_fname, 'audio', 'embedding')

just make sure that everything is in order
file_id = path.audio.parse(audio_fname)['file_id']
assert sensor_id in spl_fname and file_id in spl_fname
assert sensor_id in embedding_fname and file_id in embedding_fname

calculate some stuff and write to file
write_csv(spl_fname, get_spl(y, sr))
write_csv(embedding_fname, get_embedding(y, sr))

See how working with the paths is all independent of the actual folder structure? No path joins or weird splits and split
counting to parse out the bits and pieces of a path.

As long as you preserve the basic data relationships, (here it’s a many-to-one between data and sensors), then you can
change the file structure at the top and not have to worry about it elsewhere.

CONTENTS 3

pathtrees, Release 0.0.3

4 CONTENTS

CHAPTER

ONE

INSTALLATION

pip install pathtrees

1.1 API

pathtrees.tree(root: Union[str, _TREE_DEF_TYPE, None] = None, paths: Union[str, _TREE_DEF_TYPE,
None] = None, data: dict | None = None)→ Paths

Build paths from a directory spec.

Parameters

• root (str) – the root directory.

• paths (dict) – the directory structure.

Returns
The initialized Paths object

import pathtrees

define the file structure

path = pathtrees.tree('{project}', {
'data': {

'{sensor_id}': {
'': 'sensor',
'audio': { '{file_id:04d}.flac': 'audio' },
'spl': { 'spl_{file_id:04d}.csv': 'spl' },
'embeddings': { 'emb_{file_id:04d}.csv': 'embeddings' },

},
},

})

Note: use empty strings to reference the directory. This works because os.path.join(path, '') == path

class pathtrees.Path(*args, data: dict | None = None, tree: Paths | None = None)
Represents a pathlib.Path with placeholders for bits of data. It uses python string formatting to let you fill in
the missing bits at a later date.

5

pathtrees, Release 0.0.3

path = pathtrees.Path('projects/{name}/images/frame_{frame_id:04d}.jpg')
path.update(name='my_project')

loop over all frames
for f in path.glob():

print out some info about each frame
data = path.parse(f)
print("frame ID:", data['frame_id'])
print("path:", f)
... # do something - load an image idk

There are quite a few methods that had to be wrapped from the original path object so that if we manipulate the
path in any way that it can copy the extra attributes needed to manage the data.

rjoinpath(root: PosixPath)→ Path
Return an absolute form of the path. TODO: is there a better way?

property copy: P

Creates a copy of the path object so that data can be altered without affecting the original object.

update(**kw)→ P
Update specified data in place

specify(**kw)→ P
Update specified data and return a new object.

unspecify(*keys, inplace: bool = True, parent: bool = True)→ P
Remove keys from path dictionary

property fully_specified: bool

Check if the path is fully specified (if True, it can be formatted without raising an Underspecified error.).

format(**kw)→ str
Insert data into the path string. (Works like string format.)

Raises
KeyError if the format string is underspecified. –

partial_format(**kw)→ str
Format a field, leaving all unspecified fields to be filled later.

glob_format(**kw)→ str
Format a field, setting all unspecified fields as a wildcard (asterisk).

format_path(**kw)→ PosixPath
Insert data into the path string. (Works like string format.)

Raises
KeyError if the format string is underspecified. –

partial_format_path(**kw)→ P
Format a field, setting all unspecified fields as a wildcard (asterisk).

glob_format_path(**kw)→ PosixPath
Format a field, setting all unspecified fields as a wildcard (asterisk).

maybe_format(**kw)→ Union[str, P]
Try to format a field. If it fails, return as a Path object.

6 Chapter 1. Installation

pathtrees, Release 0.0.3

glob(*fs)→ List[str]
Glob over all unspecified variables.

Parameters
path (str) – additional paths to join. e.g. for a directory you can use ".txt" to get all
.txt files.

Returns
The paths matching the glob pattern.

Return type
list

iglob(*fs)→ Iterable[str]
Iterable glob over all unspecified variables. See glob() for signature.

rglob(*fs)→ List[str]
Recursive glob over all unspecified variables. See glob() for signature.

irglob(*fs)→ Iterable[str]
Iterable, recursive glob over all unspecified variables. See glob() for signature.

parse(path: str, use_data: bool = True)→ dict
Extract variables from a compiled path.

See parse to understand the amazing witchery that makes this possible!

https://pypi.org/project/parse/

Parameters

• path (str) – The path containing data to parse.

• use_data (bool) – Should we fill in the data we already have before parsing? This means
fewer variables that need to be parsed. Set False if you do not wish to use the data.

translate(path: str, to: str, **kw)→ P
Translate the paths to another pattern

property parents: _PathParents

A sequence of this path’s logical parents.

absolute()

Return an absolute version of this path. This function works even if the path doesn’t point to anything.

No normalization is done, i.e. all ‘.’ and ‘..’ will be kept along. Use resolve() to get the canonical path to
a file.

expanduser()

Return a new path with expanded ~ and ~user constructs (as returned by os.path.expanduser)

property parent

The logical parent of the path.

relative_to(*other)
Return the relative path to another path identified by the passed arguments. If the operation is not possible
(because this is not a subpath of the other path), raise ValueError.

resolve(strict=False)
Make the path absolute, resolving all symlinks on the way and also normalizing it (for example turning
slashes into backslashes under Windows).

1.1. API 7

https://pypi.org/project/parse/

pathtrees, Release 0.0.3

with_name(name)
Return a new path with the file name changed.

with_suffix(suffix)
Return a new path with the file suffix changed. If the path has no suffix, add given suffix. If the given suffix
is an empty string, remove the suffix from the path.

class pathtrees.Paths(paths: Dict[str, 'Path'], data: dict | None = None)
A hierarchy of paths in your project.

You can arbitrarily nest them and it will join all of the keys leading down to that path. The value is the name that
you can refer to it by.

define your file structure.

a common ML experiment structure (for me anyways)
paths = Paths.define('./logs', {

'{log_id}': {
'model.h5': 'model',
'model_spec.pkl': 'model_spec',
'plots': {

'epoch_{step_name}': {
'{plot_name}.png': 'plot',
'': 'plot_dir'

}
},
a path join hack that gives you: log_dir > ./logs/{log_id}
'', 'log_dir',

}
})
paths.update(log_id='test1', step_name='epoch_100')

get paths by name
paths.model # logs/test1/model.h5
paths.model_spec # logs/test1/model_spec.pkl
paths.plot # logs/test1/plots/{step_name}/{plot_name}.png

for example, a keras callback that saves a matplotlib plot every epoch
class MyCallback(Callback):

def on_epoch_end(self, epoch, logs):
creates a copy of the path tree that has step_name=epoch
epoch_paths = paths.specify(step_name=epoch)

...
save one plot
plt.imsave(epoch_paths.plot.specify(plot_name='confusion_matrix'))
...
save another plot
plt.imsave(epoch_paths.plot.specify(plot_name='auc'))

you can glob over any missing data (e.g. step_name => '*')
equivalent to: glob("logs/test1/plots/{step_name}/auc.png")
for path in paths.plot.specify(plot_name='auc').glob():

print(path)

8 Chapter 1. Installation

pathtrees, Release 0.0.3

keys()→ Iterable[str]
Iterate over path names in the tree.

add(root=None, paths=None)→ Ps
Build paths from a directory spec.

Parameters

• root (str) – the root directory.

• paths (dict) – the directory structure.

Returns
The initialized Paths object

rjoinpath(path)→ Paths
Give these paths a new root! Basically doing root / path for all paths in this tree. This is useful if you want
to nest a folder inside another.py

relative_to(path)→ Paths
Make these paths relative to another path! Basically doing path.relative_to(root) for all paths in this tree.
Use this with with_root to change the root directory of the paths.

parse(path, name: str)→ dict
Parse data from a formatted string (reverse of string format)

Parameters

• path (str) – the string to parse

• name (str) – the name of the path pattern to use.

property copy: Paths

Create a copy of a path tree and its paths.

update(**kw)→ Ps
Update specified data in place.

paths = pathtrees.tree({'{a}': aaa})
assert not paths.fully_specified
paths.update(a=5)
assert paths.fully_specified
assert paths.data['a'] == 5

specify(**kw)→ Ps
Creates a copy of the path tree then updates the copy’s data.

paths = pathtrees.tree({'{a}': aaa})
paths2 = paths.specify(a=5)

assert not paths.fully_specified
assert paths2.fully_specified

assert 'a' not in paths.data
assert paths2.data['a'] == 5

Equivalent to:

1.1. API 9

pathtrees, Release 0.0.3

paths.copy.update(**kw)

unspecify(*keys, inplace=False, children=True)→ Paths
Remove keys from paths dictionary.

paths = pathtrees.tree({'{a}': aaa})
paths.update(a=5)
assert paths.fully_specified
assert paths.data['a'] == 5

paths.unspecify('a')
assert not paths.fully_specified
assert 'a' not in paths.data

property fully_specified: bool

Are all paths fully specified?

paths = pathtrees.tree({'{a}': aaa})
assert not paths.fully_specified
paths.update(a=5)
assert paths.fully_specified

format(**kw)→ Dict[str, str]
Try to format all paths as strings. Raises Underspecified if data is missing.

Parameters
**kw – additional data specified for formatting.

Returns
key is the name of the path, and the value is the formatted pathlib.Path.

Return type
dict

maybe_format(**kw)→ Dict[str, Union[str, Path]]
Return a dictionary where all fully specified paths are converted to strings and underspecified strings are
left as Path objects.

Parameters
**kw – additional data specified for formatting.

partial_format(**kw)→ Dict[str, str]
Return a dictionary where all paths are converted to strings and underspecified fields are left in for later
formatting.

Parameters
**kw – additional data specified for formatting.

Note: This is a code redesign from path-tree. I re-wrote it because that was one of my very first public Pypi projects
and I’m not exactly proud of some of the design decisions I made.

On top of that! I found out that it breaks with Python 3.10. Which was the real reason. Crossing my fingers that I can
get everything pushed out before I get a GitHub issue saying everything is broken!

This is an effort to turn an old, fragile, and about-to-break project into something that I might actually import into a
new project!

10 Chapter 1. Installation

pathtrees, Release 0.0.3

The rename from path-tree to pathtrees is because I’ve always hated that the pip install name is not the same as
the import name. That is a big pet peeve so I’ll be glad to be rid of that in at least my own projects.

I threw this together (including docs) in a couple nights after work so it’s still a WIP.

The code is mostly together, but the docs and examples need work. And there’s a couple small quirks around things
like: Should path.format() return a pathlib.Path or a str?

1.1. API 11

pathtrees, Release 0.0.3

12 Chapter 1. Installation

PYTHON MODULE INDEX

p
pathtrees, 5

13

pathtrees, Release 0.0.3

14 Python Module Index

INDEX

A
absolute() (pathtrees.Path method), 7
add() (pathtrees.Paths method), 9

C
copy (pathtrees.Path property), 6
copy (pathtrees.Paths property), 9

E
expanduser() (pathtrees.Path method), 7

F
format() (pathtrees.Path method), 6
format() (pathtrees.Paths method), 10
format_path() (pathtrees.Path method), 6
fully_specified (pathtrees.Path property), 6
fully_specified (pathtrees.Paths property), 10

G
glob() (pathtrees.Path method), 6
glob_format() (pathtrees.Path method), 6
glob_format_path() (pathtrees.Path method), 6

I
iglob() (pathtrees.Path method), 7
irglob() (pathtrees.Path method), 7

K
keys() (pathtrees.Paths method), 8

M
maybe_format() (pathtrees.Path method), 6
maybe_format() (pathtrees.Paths method), 10
module

pathtrees, 5

P
parent (pathtrees.Path property), 7
parents (pathtrees.Path property), 7
parse() (pathtrees.Path method), 7
parse() (pathtrees.Paths method), 9

partial_format() (pathtrees.Path method), 6
partial_format() (pathtrees.Paths method), 10
partial_format_path() (pathtrees.Path method), 6
Path (class in pathtrees), 5
Paths (class in pathtrees), 8
pathtrees

module, 5

R
relative_to() (pathtrees.Path method), 7
relative_to() (pathtrees.Paths method), 9
resolve() (pathtrees.Path method), 7
rglob() (pathtrees.Path method), 7
rjoinpath() (pathtrees.Path method), 6
rjoinpath() (pathtrees.Paths method), 9

S
specify() (pathtrees.Path method), 6
specify() (pathtrees.Paths method), 9

T
translate() (pathtrees.Path method), 7
tree() (in module pathtrees), 5

U
unspecify() (pathtrees.Path method), 6
unspecify() (pathtrees.Paths method), 10
update() (pathtrees.Path method), 6
update() (pathtrees.Paths method), 9

W
with_name() (pathtrees.Path method), 7
with_suffix() (pathtrees.Path method), 8

15

	Installation
	API

	Python Module Index
	Index

